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Abstract: Recommender systems aspire to provide users with recommendations that have
a high probability of being accepted. This is accomplished by producing rating predictions
for products that the users have not evaluated, and, afterwards, the products with the
highest prediction scores are recommended to them. Collaborative filtering is a popular
recommender system technique which generates rating prediction scores by blending
the ratings that users with similar preferences have previously given to these products.
However, predictions may entail errors, which will either lead to recommending products
that the users would not accept or failing to recommend products that the users would
actually accept. The first case is considered much more critical, since the recommender
system will lose a significant amount of reliability and consequently interest. In this paper,
after performing a study on rating prediction confidence factors in collaborative filtering,
(a) we introduce the concept of prediction reliability classes, (b) we rank these classes in
relation to the utility of the rating predictions belonging to each class, and (c) we present a
collaborative filtering recommendation algorithm which exploits these reliability classes
for prediction formulation. The efficacy of the presented algorithm is evaluated through
an extensive multi-parameter evaluation process, which demonstrates that it significantly
enhances recommendation quality.

Keywords: collaborative filtering; recommender systems; rating predictions; reliable
recommendations; reliability classes; evaluation

1. Introduction
Collaborative filtering (CF) has become one of the most widely used methods in

recommender systems (RecSys) in recent years. CF predicts rating values for items that
users have not already rated by blending the rating values that users with similar rating
behaviors have given to the same items. In CF, these users are termed near neighbors
(NNs) [1,2].

More specifically, in the initial step of a CF RecSys, the similarities between users are
computed, using a vicinity metric. In CF research, the most commonly used metrics are the
Cosine Similarity and the Pearson Correlation [3,4]. Then, for each user, the users found to
have the highest vicinity metric values, and, therefore, who will play the role of the current
user’s NNs, are selected. The most popular techniques for selecting NNs are the top-K
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method and the vicinity metric threshold method [5,6]. In the first technique, the set of
NNs contains the K users with the largest vicinity value (K is a parameter of the method).
In the second technique, the set of NNs contains all users whose vicinity surpasses a preset
threshold value THR (which is a parameter of the technique). Consequently, for each item
that the user has not rated yet, the ratings of their NNs for the same item are combined to
generate the numeric prediction value. Combination can be performed using a weighted
average formula, where the weight for each NN’s rating is equal to the similarity between
the current user and the specific NN. In the last step of a CF RecSys, typically, the items that
achieve the highest prediction arithmetic values, for each user, are finally recommended
to them [7,8]. The number of items included in the recommendation is a parameter of
the RecSys.

For example, let us assume that for a user U, there are only two candidate items for
recommendation, i1 and i2. The rating prediction value of item i1, pr1, is computed at
4.9/5, while the rating prediction value of item i2, pr2, is computed at 4.7/5, and hence a
typical CF RecSys will recommend i1 over i2 to U, based only on the rating prediction value.
However, if we know or we can compute the confidence of each prediction formulation,
the final recommendation could be different. For example, if pr1 is found to have low
confidence (for example, it is based on only one U’s NN), whereas pr2 is found to have high
confidence (for example, it is based on 15 Us NNs), recommending item i2 appears a more
appropriate choice, since its prediction value is also very high (4.7/5) and additionally it
seems almost certain and safe.

Towards this direction, recent studies have demonstrated that an association exists
between rating prediction accuracy and the specific characteristics of individual rating
predictions in CF [9,10]. These works indicate that the following characteristics (also termed
“factors”) are strongly correlated with high accuracy in CF rating prediction: (a) the number
of NNs contributing to the prediction formulation, (b) the user’s average ratings value, and
(c) the item’s average ratings value.

In this work, after performing a study on rating prediction confidence factors in
CF, (a) we introduce the concept of prediction reliability classes; (b) we formulate a total
ordering of these classes, which is associated with the utility of the rating predictions
belonging to each class; and (c) we present a CF recommendation algorithm that prioritizes
the rating predictions which are classified in higher recommendation reliability class(es)
when making its recommendations. This algorithm bestows the RecSys administrator with
the ability to adjust the level of recommendation quality and/or coverage s/he needs. The
adjustment only utilizes essential CF data, and thus, it can be applied in every CF RecSys
dataset. We substantiate the efficacy of the presented algorithm through an extensive
multi-parameter evaluation process, using (a) both the Cosine Similarity and the Pearson
Correlation vicinity metrics, (b) both the top-K and the correlation threshold methods for
NN selection, and (c) eight CF datasets from multiple sources.

The remainder of the paper is organized as follows: in Section 2 we summarize the
related work, and in Section 3 we briefly set out the foundations of this work. In Section 4
we perform a study on rating prediction confidence factors in CF, and in Section 5 we
introduce the concept of recommendation reliability classes and consequently the proposed
algorithm. In Section 6 we present the evaluation results, and in Section 7 we discuss these
results. Finally, in Section 8 we conclude the paper and summarize our future work.

2. Related Work
CF recommendation quality is a research subject targeted by plenty of studies in

the last 10 years. The works on this subject are divided into two major categories; the
first consists of studies that consider only the basic CF input information (i.e., the users’
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ratings of items, including the time the rating took place). The second category consists of
works that consider enriched input information (i.e., the basic information, along with user
demographics and/or social relations, item categories and/or features, etc.).

Regarding the first category, Liao and Lee [11] propose a CF technique that mini-
mizes the dimensionality of products by employing a clustering algorithm. Specifically,
this approach assigns dissimilar items to separate clusters, while grouping similar items
together. Following this, a list of recommended items in rank order is provided to each
person. Diaz et al. [12] introduce a Bayesian CF method that provides explanations for the
generated recommendations. This algorithm incorporates both item-based and user-based
CF methods, merging them into a unified user–item approach. Margaris and Vassilakis [13]
introduce a CF-based technique which eliminates outdated user evaluations from the
database, assuming that they no longer accurately reflect the users’ current preferences.
This algorithm can be implemented in an unsupervised manner and has been shown to
improve rating prediction accuracy while also reducing the size of the CF rating database.
Neysiani et al. [14] propose a weighted quality CF metric which aims to overcome the
problem of multi-objective rule mining. This metric uses genetic algorithms to exploit confi-
dence in and support of association rules. The application of the genetic algorithm enables
rapid discovery of association rules. Thakkar et al. [15] propose a CF algorithm which
combines item and user predictions to generate CF predictions with minimal error. Further-
more, this algorithm incorporates both linear and support vector regressions. He et al. [16]
present a modern recommendation algorithm based on Graph Convolution Networks,
called LightGCN, which has been proved to outperform Neural Graph Collaborating Filter-
ing (NGCF). LightGCN consists of two main components: a layer combination and a light
graph convolution. The first simplifies the standard GCN approach by removing feature
transformation and nonlinear activation operations, which typically add complexity to the
training process. The second generates the concluding node embeddings by calculating the
sum of the layers’ embeddings. Li et al. [17] introduce Decoupled Graph Neural Networks
(DGNN), a method that integrates each product’s factor-level ratings with the session’s
objective. This approach first uses disentangled learning to decompose item embeddings
into factor embeddings. Then, it operates a graph neural network to effectively determine
the factors. Wei et al. [18] present a Log-range Graph Transformer model, namely LGT, that
determines user preference representation by establishing correlations between the prod-
ucts’ features. The model supports proximity calculation by incorporating modal-specific
embedding and a layer-wise position encoder. Additionally, it uses a self-attention block to
enhance the efficiency of self-attention scoring.

Considering the second major category, Yang et al. [19] suggest an approach which
combines sparse rating data with trust network data among users, to enhance the per-
formance of CF recommendations. Specifically, this method utilizes matrix factorization
techniques to capture the impact of user opinion formation more precisely. Wang et al. [20]
introduce a user similarity approach using a hybrid method that takes into account the
influence of all evaluated products, the nonlinear relationships between variables, the users’
evaluating preferences, as well as their asymmetry. The framework for this approach is
built upon a nonlinear formula, which overcomes the limitation of co-rated items and
fully leverages all available ratings. The presented user similarity model, grounded in
this framework, also incorporates additional factors, like user preferences and asymmetry.
Islam et al. [21] explore gender bias in CF RecSys tested on social media information. To
address this, they created the Neural Fair Collaborating Filtering (NFCF), a practical model
designed to reduce gender bias in the recommendation of career-related sensitive items
(e.g., courses of study, jobs, etc.). This model combines a fine-tuning and pre-training
approach to neural CF with methods of bias correction.
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Iwendi et al. [22] introduce a machine learning model CF algorithm that uses a rating
scale of 0, 2, and 4 to evaluate items, where 0, 4, and 2 represent negative, positive, and
neutral assessment. This new algorithm is designed to complement the existing review
system that handles user comments and reviews, without disrupting it. The model was built
utilizing Scikit-Learn, Pandas and Keras, and libraries to manage the internal processes.
Chen et al. [23] introduce a CF RecSys algorithm for IoT systems, which is based on
adaptive trust models. By using a sliding window and a time decay formula to calculate
direct trust, the model significantly improves the trust evaluation convergence rate. A CF
RecSys technique is designed to efficiently eliminate poor recommendations and reduce the
strength of mischievous entities. Additionally, adaptive weight is introduced to effectively
fuse recommendation trust with direct trust into a synthesized trust score, allowing the
system to better adapt to a dynamically hostile environment.

Chang et al. [24] present a hybrid approach to generate personalized travel recommen-
dations that better cater to individual travelers’ needs and enhance their online booking
experience. This approach combines multi-attribute CF with social media data within a
large-scale group decision-making framework. Specifically, k-means clustering and user
filtering methods are employed to find user-experts for travel recommendation assign-
ments. Consequently, community detection and social network construction are used to
overcome the sparsity issue. Lastly, the travel options are sorted, and recommendations
are selected in order to address the issue of cold start. Nguyen et al. [25] propose a hybrid
recommendation approach that combines word embedding analysis with CF methods. The
items’ content is represented through attributes like actors, directors, and plots, all centered
around the movie subject. The primary goal of this study is to gain a deeper understanding
of movie plot content using word embeddings, which improves the similarity measurement
between different contents. To further enhance the accuracy of similarity measurement
between movies, additional features like actors, directors, genres, and titles are also taken
into account.

Rohit et al. [26] present a CF-based machine learning approach which produces rec-
ommendations to users. In this work, they use the Rapid Miner data, a machine learning
mining tool for the tasks of research and analysis in data mining. This work achieves
satisfactory results; however, it needs additional user and item information to function,
such as user age, user location, item genre/category, etc. As a result, this approach cannot
be applied in every dataset. Shambour [27] presents a multi-criteria deep learning RecSys
algorithm that uses autoencoders to exploit the nonlinear, non-trivial, and hidden user
relations. This work satisfactorily improves the recommendation accuracy; however, it
needs additional user and item information to function, such as value for money, location,
overall QoS, etc. As a result, this algorithm cannot be applied in every dataset.

However, the idea of using rating prediction certainty factors to improve recommen-
dation quality in CF RecSys has still not been extensively explored. Recent studies have
focused on rating prediction factors that are based solely on the very basic CF information,
which are related to the accuracy of CF rating predictions. In particular, the works in [9,10]
indicate that (a) the number of NNs contributing to the prediction formulation, (b) the
user’s average ratings value, and (c) the item’s average ratings value are strongly correlated
with high accuracy in CF rating prediction. Based on the aforementioned works, the work
in Margaris et al. [28] prevents rating predictions with low confidence factor values and,
hence, low certainty from becoming recommendations. Furthermore, the work in Sgardelis
et al. [29] introduces a CF recommendation algorithm that allows for rating predictions
with higher confidence factor values to outrank predictions with higher value, but lower
confidence factor values.
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While both these research works were found to upgrade CF recommendation quality,
the first was found to significantly reduce recommendation coverage (i.e., the percentage
of the users for whom recommendations can be generated), while the second was found to
achieve marginal quality improvements (only a 2–3% enhancement).

In this work, we advance the state-of-the-art in CF RecSys research by (a) introducing
the concept of recommendation reliability classes; (b) formulating a total ordering of these
classes, which is associated with the utility of the rating predictions belonging to each class;
and (c) presenting a CF recommendation algorithm which prioritizes the rating predictions
which are classified in higher reliability class(es) when making its recommendations. This
algorithm gives the RecSys administrator the ability to adjust the level of recommendation
quality and/or coverage they need. Also, it is based only on the very basic CF information
and is thus able to be applied in every CF RecSys dataset.

3. Foundations
In this section, the foundations of our work are briefly presented. In particular, the

procedure of CF recommendation generation is presented in Section 3.1, and an overview
of the factors that affect CF rating prediction accuracy is provided in Section 3.2.

3.1. CF Recommendation Generation Procedure

The procedure of CF recommendation generation formally includes the following four
steps:

1. The CF RecSys computes the vicinities (or distances) between all database/dataset
users with the use of a vicinity metric. There is a plethora of vicinity metrics used in
CF RecSys research, but the most commonly used are the Cosine Similarity and the
Pearson Correlation [3,4];

2. For each user, the CF RecSys selects the set of users (the NNs) who will act as the
user recommenders. The NNs are typically the users who have the largest vicinity
values with the user. The most commonly adopted techniques for selecting NNs are
the top-K method (users with the K-highest vicinity metrics with target user U are
selected as U’s NNs) and the correlation threshold method (users whose vicinity with
target user U surpasses a threshold T are selected as U’s NNs) [5,6], as described in
the Introduction Section;

3. For each user, the CF RecSys tries to formulate predictions for every item the user has
not rated yet. It does so by using a prediction formula that fuses the user NNs’ ratings
of the same item into a single prediction value;

4. Typically, for each user, the item(s) receiving the top rating prediction arithmetic
score(s) is/are presented (suggested) to them.

3.2. CF Rating Prediction Accuracy Factors

Contemporary studies [9,10] have shown an association between CF rating prediction
accuracy and the following three rating prediction confidence factors:

1. The cardinality of NNs contributing to the prediction computation for the specific item
(termed as FNN). Note that, out of all the NNs of a user U, only the NNs that have rated
an item i contribute to the computation of the prediction of the rating that U would
assign to i. For sparse datasets, if FNN ≥ 2, then the prediction is considered “accurate”
and if FNN ≥ 4, then the prediction is considered “very accurate”. The respective
boundaries for dense datasets are 6% (“accurate”) and 15% (“very accurate”);

2. The user’s average value of ratings (termed as FU_AVG). For both dense and sparse
datasets, when using a five-star evaluation scale, as happens in the majority of the CF
RecSys datasets, if (FU_AVG ≤ 2.0 OR FU_AVG ≥ 4.0), then the prediction is considered
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“accurate”, and if (FU_AVG ≤ 1.5 OR FU_AVG ≥ 4.5), then the prediction is considered
“very accurate”;

3. The item’s average value of ratings (termed as FI_AVG). The boundaries are exactly
the same with the FU_AVG factor, i.e., (FI_AVG ≤ 2.0 OR FI_AVG ≥ 4.0) for the “accurate”
predictions and (FI_AVG ≤ 1.5 OR FI_AVG ≥ 4.5) for the “very accurate” predictions.

4. Experimental Settings and Evaluation Results of the Study on Rating
Prediction Confidence Factors in CF
4.1. Experimental Settings and Procedure

In this study, we use eight datasets, including both sparse and dense, from four differ-
ent sources and that are commonly utilized in CF research area to ensure generalizability.
Table 1 lists these eight datasets, summarizing their attributes.

Furthermore, in this work we use both the Pearson Correlation (PC) and the Cosine
Similarity (CS) user vicinity metrics (step 1 of the CF recommendation generation procedure,
analyzed in Section 3.1). Additionally, we use both the top-K (TOP-K) and the correlation
threshold methods (CT) for the NN selection (step 2 of the CF recommendation generation
procedure, analyzed in Section 3.1). By considering multiple approaches in each step, we
promote experimentation comprehensiveness and generalizability of results.

Regarding the TOP-K method, in our experiments we set K = 200 and K = 500. Regard-
ing the CT method, we set T = 0.0 and T = 0.5, following the works in [1,6,28,29].

Regarding the rating prediction formulation, the five-fold cross validation approach
is followed, a procedure commonly utilized in CF rating prediction research when using
rating datasets [30–33].

Table 1. The datasets involved in our experiments, along with their basic attributes.

Name Attributes

Amazon CDs_and_Vinyl [34] 112 K Users, 73.7 K items, 1.44 M ratings
(range 1–5), 5-core, density 0.017% (sparse)

Amazon Musical Instruments [34] 27.5 K Users, 10.6 K items, 231 K ratings
(range 1–5), 5-core, density 0.08% (sparse)

Amazon Videogames [34]
17.5 K users, 55 K items, 473 K

ratings (range 1–5), 5-core,
0.05% density (sparse)

Amazon Digital Music [34]
12 K users, 17 K items, 145 K ratings

(range 1–5), 5-core,
0.07% density (sparse)

CiaoDVD [35] 17.6 K users, 16 K items, 73 K ratings (range 1–5),
0.026% density (sparse)

Epinions [36] 22 K users, 296 K items, 922 K ratings (range 1–5),
0.014% density (sparse)

MovieLens 100K old [37] 1 K users, 1.7 K items, 100 K ratings (range 1–5),
5.88% density (dense)

MovieLens 1M [37] 6 K users, 3.7 items, 1 M ratings (range 1–5),
4.5% density (dense)

In this work, we consider the following two RecSys evaluation metrics (following the
works in [28,29,38,39]):

1. The precision of the recommendations;
2. The average actual arithmetic rating values of the items that have been recommended.
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Regarding the number of recommended items, we use the top-1 and top-3, i.e., we first
recommend one item to each user and subsequently three items. Furthermore, regarding
the prediction and acceptance threshold of the recommended items, we follow the approach
adopted in many research works [40–42], including the two works which will be used
for comparison [28,29]. Based on this approach, the items with rating prediction scores
in the upper 30% of the evaluation range (i.e., 3.5/5 for the five-star rating scale) can be
recommended to the users. Similarly, the items whose actual rating is ≥3.5 are considered
accepted/liked by the users.

4.2. Evaluation Results of the Study on Rating Prediction Confidence Factors in CF

The first step of this work is an experimental study of the association between (i) the
arithmetic value of the rating prediction, (ii) the confidence factors satisfied by this predic-
tion, and (iii) the actual-real rating value, in CF datasets. This experiment aims to provide
insight that will enable the extraction of rules that can be used for prioritizing recommen-
dations, effectively constituting the validation phase of the study, since the prioritization
rules correspond to hyperparameters of the proposed algorithm. These rules will take into
account (a) the rating prediction values, (b) the prediction accuracy factors associated with
each prediction, and (c) the observed accuracy of these predictions.

In the first set of experiments, we use the first two datasets of Table 1, i.e., the Amazon
CDs and Vinyl and the Amazon Musical Instruments. Furthermore, we exploit the three CF
rating prediction accuracy factors analyzed in Section 3.2 to compute a partial confidence
score for each of the rating prediction accuracy factors (number of NNs, user’s average
value of ratings, and item’s average value of ratings) as follows:

• If the rating prediction fulfils the strict criterion for the specific factor (and is considered
“very accurate”), we assign a factor-specific confidence score of 1.0 to the particular
prediction;

• Otherwise, if the rating fulfills the loose criterion for the specific factor (and is thus
considered “accurate”), we assign a factor-specific confidence score of 0.5 to the
prediction;

• Otherwise, the rating does not fulfill either the strict or the loose criterion for the
specific factor; thus we assign a factor-specific confidence score of 0.0 to the prediction.

Finally, we sum up the three partial, factor-specific confidence scores for the prediction,
to compute the prediction’s overall confidence score.

Table 2 depicts the average precision value of the recommendations, in association with
the rating prediction value and their rating prediction confidence score, when the Amazon
CDs_and_Vinyl dataset is used, and the PC vicinity metric and TOP-K NN selection method
with K = 200 are applied, for one recommendation per user. Table 3 depicts the respective
actual rating value of the rating predictions while Figure 1 visualizes the results of Table 2.

In both tables, we can observe that when both rating prediction parameters (value,
confidence score) are increased, the average precision of the recommendations tends to
increase. We can also observe that an increase in the rating prediction value is not by itself
sufficient to warrant an improvement in the recommendations. For example, when none
of the confidence factors are fulfilled (first column of both tables), the recommendation
precision values prove to be independent of the prediction values. These are 64.2% when
the rating prediction value is between 4.7 and 4.8, 52.1% when the rating prediction value
is between 4.8 and 4.9, and 59.9% when the rating prediction value is between 4.9 and 5.0.

A similar output is produced for all rating prediction parameters tested (i.e., setting
K = 500, using the CT NN selection method, employing the CS user vicinity function, and
recommending three items).
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Table 2. Mean precision value of the recommendations, in association with their predicted values
and their confidence scores.

Rating Prediction Value
Rating Prediction Confidence Score

0 0.5 1 1.5 2 2.5 3

3.5–3.6 0.548 0.594 0.686 0.737 0.806 0.832 0.899
3.6–3.7 0.508 0.643 0.714 0.761 0.814 0.859 0.922
3.7–3.8 0.568 0.639 0.724 0.783 0.825 0.856 0.893
3.8–3.9 0.572 0.652 0.745 0.793 0.832 0.866 0.835
3.9–4.0 0.587 0.698 0.768 0.815 0.855 0.906 0.914
4.0–4.1 0.642 0.703 0.781 0.829 0.863 0.893 0.907
4.1–4.2 0.561 0.716 0.786 0.839 0.873 0.903 0.917
4.2–4.3 0.512 0.699 0.785 0.843 0.886 0.915 0.945
4.3–4.4 0.612 0.719 0.804 0.86 0.894 0.917 0.946
4.4–4.5 0.611 0.755 0.814 0.883 0.906 0.927 0.952
4.5–4.6 0.613 0.747 0.828 0.889 0.908 0.941 0.957
4.6–4.7 0.64 0.726 0.828 0.893 0.917 0.943 0.963
4.7–4.8 0.642 0.722 0.83 0.902 0.927 0.95 0.964
4.8–4.9 0.521 0.74 0.847 0.904 0.941 0.954 0.962
4.9–5.0 0.599 0.735 0.849 0.913 0.951 0.968 0.982

Table 3. Mean actual rating value of the recommendations, in association with their predicted values
and their confidence scores.

Rating Prediction Value
Rating Prediction Confidence Score

0 0.5 1 1.5 2 2.5 3

3.5–3.6 3.48 3.577 3.865 4.01 4.184 4.199 4.42
3.6–3.7 3.339 3.695 3.934 4.071 4.201 4.273 4.461
3.7–3.8 3.474 3.726 3.956 4.12 4.261 4.309 4.385
3.8–3.9 3.478 3.758 4.029 4.154 4.282 4.352 4.21
3.9–4.0 3.499 3.84 4.065 4.261 4.354 4.47 4.348
4.0–4.1 3.649 3.908 4.134 4.249 4.386 4.468 4.515
4.1–4.2 3.473 3.913 4.144 4.293 4.426 4.52 4.514
4.2–4.3 3.366 3.886 4.136 4.313 4.461 4.576 4.635
4.3–4.4 3.562 3.921 4.197 4.386 4.484 4.59 4.704
4.4–4.5 3.58 4.022 4.224 4.444 4.532 4.629 4.704
4.5–4.6 3.559 3.969 4.256 4.474 4.562 4.676 4.759
4.6–4.7 3.584 3.959 4.291 4.496 4.61 4.708 4.777
4.7–4.8 3.642 3.923 4.316 4.524 4.646 4.735 4.791
4.8–4.9 3.408 4.033 4.318 4.533 4.696 4.766 4.813
4.9–5.0 3.534 3.966 4.339 4.588 4.755 4.825 4.898

Again, we can observe that the same trend exists, i.e., when both prediction parameters
(value, confidence score) are increased, the average precision value of the recommendations
also tends to increase. We can again observe that an increase in the rating prediction value
is not by itself sufficient to warrant an improvement in the recommendations. For example,
when no confidence factor is fulfilled, the average precision value of the recommenda-
tions fluctuates between 50% (for the 4.7–4.8 rating prediction range) and 89% (for the
4.6–4.7 rating prediction range).
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rating prediction value and the respective confidence score when the Amazon Musi-
cal_Instruments dataset is used, under the PC vicinity metric and applying the TOP-K NN
selection method with K = 200, for one recommendation per user.
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their confidence scores. (Amazon Musical_Instruments dataset).

5. The Concept of Recommendation Reliability Classes and the
Proposed Algorithm

Based on the evaluation results of the study on rating prediction confidence factors in
CF, in this section, (1) we introduce the concept of recommendation reliability classes in CF,
and (2) we present the proposed algorithm.
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5.1. The Concept of Recommendation Reliability Classes in CF

The results of the evaluation procedure described in Section 4.2 demonstrate the
existence of reliability levels of recommendations in CF. More specifically, predictions with
both a high rating prediction value (RPV) and a high confidence score (CSC) are shown to
be much more reliable in terms of becoming successful recommendations, when compared
to predictions with high RPV but low CSC, or vice versa.

In this work, we consider the average precision value from the results of the exper-
iments with the two datasets (i.e., the Amazon CDs_and_Vinyl and the Amazon Musi-
cal_Instruments), and we discern six reliability classes: (a) the cases where the average
precision is ≥95%, (b) the cases where the average precision is ≥90%, (c) the cases where
the average precision is ≥85%, (d) the cases where the average precision is ≥80%, (e) the
cases where the average precision is ≥75%, and (f) the rest of the cases. In some cases, the
precision threshold is slightly relaxed in order to facilitate the formulation of contiguous
areas in the search space. In these cases, the decision on where to lower or increase the
threshold was taken by considering the absolute distances of the involved datapoints from
the thresholds. For instance, in order to partition the column corresponding to confidence
score “2” between the reliability classes 2 and 3 in contiguous areas, either the datapoint
(4.4–4.5, 2) should be included in Rclass3 (despite the fact that it belongs to Rclass2 accord-
ing to the thresholds set above), or the datapoint (4.5–4.6, 2) should be included in Rclass2
(while according to the thresholds it should be placed in Rclass3). The former option leads
to the need to relax the threshold by 0.05, and the latter by 0.07; hence, the former option
was chosen. Figure 3 illustrates the segmentation of the rating predictions into the six
reliability classes (Rclass1 to Rclass6).
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Figure 3. Average precision value of the two datasets, along with the segmentation into reliability
classes.

To determine the optimal number of reliability classes, experiments were conducted
with the number of reliability classes ranging from two to eight. These experiments
demonstrated that the highest recommendation precision was obtained when the number
of classes was set to six. To further validate the optimal number of classes, agglomerative
clustering [43,44] was applied to the average precision values depicted in Figure 3, with
the number of clusters ranging again from two to eight. For each cluster, the corresponding
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Davies–Bouldin index [45] was computed to assess the quality of the cluster. Figure 4
illustrates the results of the cluster quality assessment experiment. In this figure, we can
observe that the value of the Davies–Bouldin index is minimized when the number of
clusters is set to six, corroborating the decision to set the optimal number of reliability
classes to six.
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Based on these results and considering that the optimal number of reliability classes is
six, this work introduces the following six reliability classes in CF:

1. Reliability Class 1 (Rclass1): it contains the rating predictions where (CSC = 3.0 AND
RPV ≥ 4.6) OR (CSC = 2.5 AND RPV ≥ 4.8);

2. Reliability Class 2 (Rclass2): it contains the rating predictions which do not already
belong to RClass1 and where (CSC = 3.0 AND RPV ≥ 3.9) OR (CSC = 2.5 AND
RPV ≥ 4.2) OR (CSC = 2.0 AND RPV ≥ 4.6) OR (CSC = 1.5 AND RPV ≥ 4.9);

3. Reliability Class 3 (Rclass3): it contains the rating predictions which do not already
belong to RClass1 or RClass2 and where (CSC = 3.0 AND RPV ≥ 3.5) OR (CSC = 2.5
AND RPV ≥ 3.7) OR (CSC = 2.0 AND RPV ≥ 3.8) OR (CSC = 1.5 AND RPV ≥ 4.2);

4. Reliability Class 4 (Rclass4): it contains the rating predictions which do not already
belong to RClass1, RClass2, or RClass3 and where (CSC = 2.5 AND RPV ≥ 3.5) OR
(CSC = 2.0 AND RPV ≥ 3.5) OR (CSC = 1.5 AND RPV ≥ 3.9) OR (CSC = 1.0 AND
RPV ≥ 4.1);

5. Reliability Class 5 (Rclass5): it contains the rating predictions which do not already be-
long to RClass1, RClass2, RClass3, or RClass4 and where (CSC = 1.5 AND RPV ≥ 3.5)
OR (CSC = 1.0 AND RPV ≥ 3.8);

6. Reliability Class 6 (Rclass6): the rest of the rating predictions with RPV ≥ 3.5 (which is
the typical threshold used by CF RecSys algorithms for a prediction to be considered
in the recommendation formulation phase).

5.2. The Proposed Algorithm

The proposed CF algorithm modifies the typical recommendation formulation proce-
dure to exploit the reliability class concept in order to generate more successful recommen-
dations. In more detail, the proposed algorithm consists of the following three steps:

1. The algorithm computes the RPV and CSC for every item prediction;
2. The rating predictions with RPV ≥ 3.5 are classified into one of the six reliability

classes, as defined above;
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3. For each user, the proposed algorithm begins to select items with predictions that
belong to Rclass1. If they do not suffice, the items with predictions that belong to
Rclass2 are selected for recommendation, and so on. If more than one item exists in
the same class, based on the results shown in the previous subsection, firstly the CSC
and secondly the RPV are used as tie-breakers.

In the next section, the proposed algorithm is experimentally evaluated, in terms of
recommendation accuracy.

6. Experimental Evaluation
This section presents the experiments designed to assess the recommendation accuracy

of the proposed algorithm. More specifically, we use the remaining six datasets from Table 1
(i.e., the Amazon Videogames, the Amazon Digital Music, the CiaoDVD, the Epinions, the
MovieLens 100 K old, and the MovieLens 1 M), to ensure that the data used for the tuning
of the algorithm are not utilized in the performance evaluation phase, ensuring the absence
of bias.

Table 4 depicts the recommendation precision (in percentage form) of the six reliability
classes proposed in this work, for each of the six datasets, when the PC vicinity metric
and TOP-K NN selection method with K = 200 are applied. Table 5 depicts the average
actual rating value of the recommendations under the same settings. Similar results are
observed for all the rating prediction parameters tested (i.e., setting K = 500, using the CT
NN selection method—both with thresholds 0.0 and 0.5—and using the CS user vicinity
metric). These results can be found in Tables A1 and A2 in Appendix A.

Table 4. Average recommendation precision of the six reliability classes.

Class Amazon
Videogames

Amazon Digital
Music CiaoDVD Epinions MovieLens

100 K
MovieLens

1 M AVG

Rclass1 98% 99% 96% 96% 97% 93% 97%
Rclass2 93% 97% 91% 91% 92% 92% 93%
Rclass3 85% 91% 86% 85% 88% 89% 87%
Rclass4 81% 87% 79% 81% 84% 87% 83%
Rclass5 76% 82% 74% 74% 76% 82% 78%
Rclass6 67% 74% 68% 68% 65% 68% 68%

Table 5. Average actual rating value of the six reliability classes.

Class Amazon
Videogames

Amazon Digital
Music CiaoDVD Epinions MovieLens

100 K
MovieLens

1 M AVG

Rclass1 4.87 4.94 4.75 4.75 4.72 4.67 4.78
Rclass2 4.69 4.84 4.51 4.54 4.58 4.57 4.62
Rclass3 4.40 4.48 4.31 4.33 4.38 4.45 4.39
Rclass4 4.26 4.28 4.14 4.18 4.25 4.37 4.25
Rclass5 4.10 4.13 4.04 3.98 4.01 4.21 4.08
Rclass6 3.81 3.97 3.79 3.77 3.77 3.85 3.83

Based on these findings, if the CF RecSys is only able to select predictions from Rclass1
for recommendations, the recommendation precision is, on average, 97%. If predictions
from Rclass2 are also recommended (i.e., the predictions that belong to Rclass1 do not
suffice), the recommendation precision is, on average, 94%. In plain CF, if in the same six
datasets the RecSys only recommends items with rating predictions in the range [4.75, 5]
(which are considered excellent prediction values), the respective recommendation pre-
cision is measured as 90%, which is lower than the recommendation precision of both



Big Data Cogn. Comput. 2025, 9, 106 13 of 23

Rclass1 and Rclass2 introduced in this paper. The respective average real rating values are
4.78/5 (for Rclass1), 4.62/5 (for Rclass2), and 4.53 (for RPV ≥ 4.75).

In the next set of experiments, the proposed algorithm, which considers both the
RPVs and their confidence factors, is compared to works that also take into account the
aforementioned two CF prediction confidence factors, and more specifically, the work
in [28] and the work in [29].

In more detail, the algorithm proposed in [28] prevents rating predictions with low
prediction confidence factor values, and hence low certainty, from becoming recommen-
dations. When applying this algorithm, we can either use the strict or the loose threshold
confidence factor values (c.f. Section 3.2). When using the strict threshold values, we
achieve higher recommendation success but very low recommendation coverage. When
we use the loose threshold values, we achieve higher recommendation coverage but lower
recommendation success. In the experiments that follow, we will use both alternatives for
comprehensiveness; the algorithm utilizing strict thresholds will be termed “elimination
strict” and the algorithm utilizing loose thresholds will be referred to as “elimination loose”.
On the other hand, the work in [29] introduces a CF recommendation algorithm that allows
for rating predictions with higher confidence factor values to outrank predictions with
higher value but lower confidence factor values; this algorithm will be termed “outrank”.

Figure 5 depicts the mean recommendation coverage when recommending one item
to each user and employing the Pearson Correlation similarity method and the KNN tech-
nique, with K = 200. As we mentioned above, the algorithm proposed in [28], when apply-
ing the strict thresholds (termed “elimination strict”), achieves an extremely low recommen-
dation coverage. That is, it can recommend one item to only 5.9% of the users, on average.
Furthermore, out of the six datasets tested, it was found that for one dataset (MovieLens
100 K) the recommendation coverage was 0%, and for another dataset (CiaoDVD) the
recommendation coverage was 1.3% (i.e., this algorithm, with the strict thresholds, is able
to recommend an item to less than 250 users out of the 17.6 K users of the dataset). There-
fore, it was excluded from the next experiments. In this experiment, we can observe that,
when solely using rating predictions which are classified in Rclass1 as recommendations,
the coverage is relatively low (nevertheless, larger than the one the “elimination strict”
achieves). However, when we include more classes in the recommendation formulation,
the coverage quickly increases. For example, when we opt to use predictions from classes
Rclass1, Rclass2, Rclass3, and Rclass4 (termed “Rclasses1–4”) as recommendations, the
recommendation coverage is found to be 63.8%, which is comparable to the plain CF, which
is found to be 71.1%. We can also observe that the algorithm proposed in [29] (termed
“outrank”) and the algorithm proposed in this paper, when using all six Rclasses, do not
lose recommendation coverage, since they do not prevent any rating predictions from
becoming recommendations.

Figure 6 depicts the mean recommendation precision when recommending one item
to each user and employing the Pearson Correlation similarity method and the KNN
technique, with K = 200. We can observe that, when we only use predictions from Rclass1
as recommendations, their precision is extremely high, measured at 94.9%. As we add
predictions classified in lower classes, the average recommendation precision decreases
(from 91.1% for Rclasses1–2 to 86% for Rclasses1–6), as expected.

Figure 7 depicts the mean actual rating value of the recommendations when recom-
mending one item to each user and employing the Pearson Correlation similarity method
and the KNN technique, with K = 200. We can observe that the results are very similar to
those of the recommendation precision metric (Figure 6). When we only use predictions
from Rclass1 as recommendations, the average real rating value of the recommendation is
4.76/5. As we add predictions classified in lower classes, the average real rating value of
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the recommendations decreases (from 4.59/5 for Rclasses1–2 to 4.41/5 for Rclasses1–6), as
expected.
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Figure 5. Average recommendation coverage, using the Pearson Correlation and the KNN technique,
with K = 200 (top-1 item).
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Figure 6. Average recommendation precision, using the Pearson Correlation and the KNN technique,
with K = 200 (top-1 item).
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Figure 7. Average actual rating value of the recommendations, using the Pearson Correlation and the
KNN technique, with K = 200 (top-1 item).
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A similar output is observed for all rating prediction parameters tested (i.e., setting
K = 500, using the CT NN selection method with both thresholds 0.0 and 0.5, employing
the CS user vicinity formula, and recommending three items—top-3 recs). These results
can be found in Tables A3 and A4, in Appendix A.

7. Discussion
As demonstrated in the previous section, the experimental evaluation shows that the

proposed algorithm, which is based on the novel concept of the reliability classes, is able to
upgrade the recommendation accuracy in CF. Furthermore, the presented algorithm gives
the RecSys administrator the ability to adjust the level of recommendation accuracy and/or
coverage they need. More specifically, the RecSys administrator can choose between six
alternatives of higher–lower recommendation coverage and recommendation accuracy and
quality. For example, for datasets that reach higher initial recommendation coverage (for
instance, when the plain CF algorithm achieves a recommendation coverage > 90%), the
administrator may choose to include predictions from, e.g., Rclasses1–2. Conversely, for
very sparse datasets (where the initial recommendation coverage is, for example, <30%)
the administrator may choose to include predictions from Rclasses1–5.

Furthermore, we need to focus on two interesting cases to highlight the efficacy of the
proposed algorithm.

The first case is the comparison between the algorithm presented in [28], termed “elim-
ination loose”, and the case of Rclasses1–2 of the proposed algorithm, which recommends
items with predictions classified in either Rclass1 (primarily) or Rclass2. We can notice
that the algorithm proposed in this study shows equal recommendation accuracy to the
“elimination loose” alternative of the algorithm presented in [28] (91.1% precision and
4.59/5 actual rating of recommendations, versus 91.2% and 4.58/5, respectively). Nonethe-
less, its recommendation coverage clearly surpasses the “elimination loose” alternative of
the algorithm presented in [28] by 8.5% in absolute magnitude, which corresponds to an
increase of 28%.

The second case is a comparison between the algorithm presented in [29], termed
“outrank”, and the case of Rclasses1–6 of the proposed algorithm, which recommends items
with predictions classified primarily in Rclass1, and then, in the absence of this, proceeds
to Rclass2, etc., until Rclass6. Both these algorithms share the same recommendation
coverage, equal to the coverage of the plain CF algorithm (since neither of them eliminates
any predictions). However, the algorithm introduced in this work achieves both higher
average recommendation precision (86.0% versus 83.8% for the algorithm presented in [29]
and 80.2% for the plain CF) and average actual rating of recommendations (4.41/5 versus
4.35/5 for the algorithm presented in [29] and 4.23/5 for the plain CF) and therefore higher
recommendation quality.

As a result, we can conclude that the algorithm presented in this work exhibits higher
performance than both the algorithms presented in [28,29].

It is worth noting that, recently, rating prediction reliability has been considered in
conjunction with deep learning models. More specifically, ref. [46] presents an extension
of the Neural CF (NCF) method [47], which computes both rating predictions and their
associated reliabilities, and then uses reliabilities in the recommendation formulation
stage. The method proposed in [46] supersedes the plain NCF in terms of classification
but lags behind the NCF in terms of the regression method. According to the authors,
the computation and use of reliability indicators can be used for the detection of shilling
attacks, promoting recommendation explainability, or within navigational tools to outline
user and item dependencies. On the contrary, the method proposed in this paper achieves
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considerable improvements compared to the baselines. In our future work, we plan to use
the prediction reliability factors in conjunction with machine learning models.

Deep learning approaches have also been employed for generic recommendation for-
mulation without considering reliability aspects. The work in [48] presents a movie RecSys
based on LightGCN [16] which models movie rating information as graphs and formulates
recommendations by predicting user–movie edges on the graph. The evaluation presented
in [48] indicates that the method proposed therein can achieve recommendation precision
equal to 0.91 when applied to the MovieLens 1 M dataset. The algorithm proposed in this
paper exhibits superior performance with the same dataset, achieving precision of up to
96% when recommendations are drawn only from Rclass1 and 92% when recommendations
are drawn from either Rclass1 or Rclass2, and thus enhancing recommendation diversity.

The work in [49] uses graph embedding to model user behavior and proceeds with
identifying users that are similar to the target user by applying decision trees, fuzzy rules,
and ensemble learning. Once similar users are identified, a heterogeneous knowledge
graph is constructed using the embedding vectors, and the graph is exploited to generate
recommendations. The approach is evaluated using the MovieLens 1 M dataset, achieving
precision equal to 82%. The algorithm proposed in this paper outperforms the one presented
in [49], by achieving precision of up to 96% with the same dataset.

The work in [50] employs the novel Transformer Model approach to formulate recom-
mendations. More specifically, the algorithm proposed in [50] utilizes a textual information
source and a utility matrix data source, initially processing each of them individually
through deep learning models, in order to extract pertinent features. Subsequently, the two
feature sets are fused through transformers to generate recommendations. The evaluation
presented in [50] achieves recommendation precision equal to 67.16% when applied to the
MovieLens dataset and 83.31% when applied to the Amazon VideoGames dataset. The
algorithm proposed in this paper surpasses this performance level, achieving precision
of up to 96% when applied to the MovieLens dataset and up to 98% when applied to the
Amazon VideoGames dataset.

In this work, we based the computation of confidence factors solely on the user–item
rating matrix. This ensures that confidence factor computation can be performed on all
datasets, since many datasets include only this basic information. It is worth noting the
following, however:

• The methodology presented in this paper for recommendation formulation can be
used in conjunction with rating prediction approaches that consider additional factors,
such as user demographics, item categories and characteristics, contextual informa-
tion, social network graphs, etc. This applies both to memory-based and user-based
techniques;

• The confidence factor computation procedure can itself be augmented to consider the
abovementioned additional factors and/or to use different weights for the contributing
features.

In our future work, we plan to explore both these research directions.

8. Conclusions and Future Work
In this work, we advance the state-of-the-art in CF RecSys research by (a) introducing

the concept of recommendation reliability classes; (b) formulating a total ordering of these
classes, which is associated with the utility of the rating predictions belonging to each class;
and (c) presenting a CF recommendation algorithm that prioritizes the rating predictions
which are classified in higher reliability class(es) when making its recommendations. This
algorithm gives the RecSys administrator the ability to adjust the level of recommendation
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quality and/or coverage they need. Furthermore, the proposed algorithm relies exclusively
on the essential CF data and is thus able to be applied to every CF RecSys database/dataset.

We substantiated the efficacy of the proposed algorithm through an extensive multi-
parameter assessment process, employing (a) two user vicinity metrics, (b) two methods
for NN selection, and (c) eight CF datasets from multiple sources, to ensure generalizability.
The proposed algorithm was found to achieve high recommendation quality results, in
terms of recommendation accuracy and coverage, while it was found to outperform related
and contemporary algorithms ([28,29], both published in 2024).

In our future work, we plan to study and experiment on alternative rating prediction
features. Furthermore, we plan to study and experiment on different reliability class
thresholds for each user. We also aim to incorporate additional data sources, where
possible—from user demographics and social relations to item characteristics and product
categories—to further enhance the recommendation quality in CF. Finally, we will consider
the use of reliability assessments in conjunction with machine learning models.
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Appendix A

Table A1. Aggregated results of the mean recommendation precision of the six reliability classes,
under different settings.

Amazon
Videogames

Amazon Digital
Music CiaoDVD Epinions MovieLens

100 K
MovieLens

1 M

PC, K = 200
Rclass1 98% 99% 96% 96% 97% 93%
Rclass2 93% 97% 92% 92% 92% 92%
Rclass3 84% 90% 86% 84% 87% 89%
Rclass4 81% 87% 79% 81% 84% 87%
Rclass5 76% 82% 76% 74% 76% 82%
Rclass6 67% 74% 66% 68% 65% 68%

PC, K = 500
Rclass1 97% 99% 97% 96% 97% 95%
Rclass2 93% 98% 90% 90% 92% 93%
Rclass3 85% 90% 84% 85% 86% 89%
Rclass4 81% 86% 79% 80% 81% 88%
Rclass5 75% 82% 74% 74% 74% 81%
Rclass6 68% 75% 65% 69% 64% 70%

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://guoguibing.github.io/librec/datasets.html
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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Table A1. Cont.

Amazon
Videogames

Amazon Digital
Music CiaoDVD Epinions MovieLens

100 K
MovieLens

1 M

PC, CT = 0.0
Rclass1 97% 99% 97% 96% 96% 96%
Rclass2 93% 98% 92% 91% 93% 93%
Rclass3 85% 91% 86% 84% 87% 85%
Rclass4 80% 87% 80% 80% 81% 77%
Rclass5 74% 82% 74% 72% 73% 72%
Rclass6 68% 74% 68% 70% 64% 61%

PC, CT = 0.5
Rclass1 97% 99% 97% 96% 93% 96%
Rclass2 93% 97% 92% 92% 94% 93%
Rclass3 85% 92% 85% 84% 88% 86%
Rclass4 81% 87% 81% 80% 86% 82%
Rclass5 75% 82% 76% 72% 77% 74%
Rclass6 68% 74% 68% 70% 67% 66%

CS, K = 200
Rclass1 97% 99% 96% 96% 94% 93%
Rclass2 93% 98% 91% 91% 94% 93%
Rclass3 85% 91% 85% 84% 88% 89%
Rclass4 81% 86% 80% 81% 86% 87%
Rclass5 76% 83% 76% 74% 79% 83%
Rclass6 67% 73% 70% 69% 66% 69%

CS, K = 500
Rclass1 97% 99% 96% 96% 96% 94%
Rclass2 93% 98% 91% 91% 93% 92%
Rclass3 84% 91% 84% 84% 85% 90%
Rclass4 80% 86% 81% 80% 83% 88%
Rclass5 75% 82% 75% 73% 75% 83%
Rclass6 67% 74% 68% 69% 65% 70%

CS, CT = 0.0
Rclass1 97% 99% 96% 96% 96% 96%
Rclass2 92% 98% 91% 91% 91% 91%
Rclass3 84% 91% 85% 84% 84% 84%
Rclass4 79% 85% 79% 79% 79% 78%
Rclass5 73% 81% 73% 72% 72% 72%
Rclass6 67% 73% 68% 71% 63% 61%

CS, CT = 0.5
Rclass1 97% 99% 96% 96% 95% 96%
Rclass2 93% 97% 90% 91% 92% 92%
Rclass3 84% 90% 85% 84% 84% 84%
Rclass4 79% 85% 79% 79% 79% 78%
Rclass5 73% 81% 73% 72% 73% 72%
Rclass6 67% 73% 68% 71% 67% 61%

Table A2. Aggregated results of the mean actual rating value of the recommendations of the reliability
classes, under different settings.

Amazon
Videogames

Amazon Digital
Music CiaoDVD Epinions MovieLens

100 K
MovieLens

1 M

PC, K = 200
Rclass1 4.87 4.94 4.75 4.75 4.72 4.67
Rclass2 4.69 4.85 4.51 4.55 4.58 4.59
Rclass3 4.39 4.48 4.30 4.32 4.37 4.43
Rclass4 4.26 4.28 4.14 4.18 4.25 4.37
Rclass5 4.1 4.13 4.04 3.98 4.01 4.21
Rclass6 3.81 3.97 3.79 3.77 3.77 3.85
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Table A2. Cont.

Amazon
Videogames

Amazon Digital
Music CiaoDVD Epinions MovieLens

100 K
MovieLens

1 M

PC, K = 500
Rclass1 4.87 4.93 4.76 4.75 4.67 4.71
Rclass2 4.67 4.82 4.47 4.53 4.57 4.61
Rclass3 4.38 4.45 4.27 4.29 4.31 4.45
Rclass4 4.25 4.25 4.11 4.15 4.17 4.38
Rclass5 4.06 4.12 3.99 3.95 3.96 4.17
Rclass6 3.83 3.97 3.76 3.80 3.74 3.88

PC, CT = 0.0
Rclass1 4.87 4.94 4.77 4.75 4.65 4.72
Rclass2 4.69 4.84 4.54 4.52 4.58 4.53
Rclass3 4.39 4.46 4.29 4.28 4.31 4.31
Rclass4 4.22 4.26 4.12 4.11 4.14 4.05
Rclass5 4.04 4.15 3.98 3.90 3.94 3.92
Rclass6 3.84 3.96 3.80 3.84 3.72 3.67

PC, CT = 0.5
Rclass1 4.87 4.94 4.77 4.75 4.59 4.74
Rclass2 4.71 4.83 4.55 4.53 4.56 4.55
Rclass3 4.40 4.48 4.31 4.29 4.37 4.34
Rclass4 4.24 4.27 4.16 4.12 4.31 4.17
Rclass5 4.06 4.14 4.02 3.90 4.02 3.97
Rclass6 3.84 3.95 3.81 3.83 3.82 3.78

CS, K = 200
Rclass1 4.87 4.94 4.73 4.74 4.61 4.68
Rclass2 4.71 4.85 4.52 4.54 4.60 4.56
Rclass3 4.39 4.47 4.29 4.31 4.38 4.44
Rclass4 4.24 4.26 4.16 4.18 4.32 4.36
Rclass5 4.08 4.15 4.04 3.97 4.08 4.25
Rclass6 3.8 3.96 3.84 3.8 3.8 3.86

CS, K = 500
Rclass1 4.87 4.93 4.73 4.74 4.63 4.69
Rclass2 4.68 4.84 4.52 4.53 4.57 4.60
Rclass3 4.39 4.44 4.29 4.29 4.33 4.46
Rclass4 4.21 4.24 4.15 4.15 4.21 4.38
Rclass5 4.06 4.14 4 3.95 3.99 4.24
Rclass6 3.81 3.99 3.81 3.8 3.76 3.87

CS, CT = 0.0
Rclass1 4.86 4.93 4.74 4.74 4.66 4.72
Rclass2 4.67 4.83 4.50 4.53 4.54 4.49
Rclass3 4.35 4.42 4.29 4.28 4.28 4.28
Rclass4 4.18 4.24 4.11 4.11 4.12 4.07
Rclass5 4.01 4.14 3.95 3.90 3.92 3.91
Rclass6 3.83 3.97 3.80 3.85 3.70 3.66

CS, CT = 0.5
Rclass1 4.86 4.93 4.74 4.74 4.63 4.71
Rclass2 4.66 4.83 4.51 4.53 4.52 4.51
Rclass3 4.36 4.44 4.28 4.28 4.27 4.26
Rclass4 4.18 4.24 4.11 4.11 4.08 4.06
Rclass5 4.01 4.14 3.95 3.90 3.91 3.90
Rclass6 3.83 3.97 3.80 3.85 3.66 3.66
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Table A3. Aggregated results of the proposed algorithm when recommending one item to each user
(top-1), under different settings.

Setting/Metric Rclass1 Rclasses1–2 Rclasses1–3 Rclasses1–4 Rclasses1–5 Rclasses1–6

PC, K = 200, top-1
avg. coverage 14.2% 38.8% 56.2% 63.8% 68.5% 71.1%
avg. precision 94.9% 91.0% 89.0% 88.1% 87.4% 86.0%
avg. real rating 4.76/5 4.60/5 4.50/5 4.48/5 4.45/5 4.41/5

PC, K = 500, top-1
avg. coverage 16.2% 40.7% 58.2% 64.7% 68.8% 71.4%
avg. precision 95.4% 91.3% 89.6% 88.4% 87.6% 86.5%
avg. real rating 4.77/5 4.59/5 4.51/5 4.48/5 4.46/5 4.42/5

PC, CT = 0.0, top-1
avg. coverage 18.2% 43.7% 60.5% 66.5% 69.8% 72.1%
avg. precision 95.6% 92.1% 90.1% 89.1% 88.4% 87.4%
avg. real rating 4.78/5 4.62/5 4.54/5 4.51/5 4.48/5 4.45/5

PC, CT = 0.5, top-1
avg. coverage 17.7% 43.5% 60.5% 65.2% 69.5% 71.9%
avg. precision 95.4% 92.1% 90.2% 88.4% 87.5% 86.2%
avg. real rating 4.76/5 4.62/5 4.52/5 4.49/5 4.46/5 4.42/5

CS, K = 200, top-1
avg. coverage 17.8% 42.7% 60.4% 69.0% 74.8% 78.2%
avg. precision 94.1% 90.7% 88.6% 87.5% 86.6% 84.9%
avg. real rating 4.72/5 4.58/5 4.48/5 4.46/5 4.43/5 4.38/5

CS, K = 500, top-1
avg. coverage 19.9% 44.8% 63.4% 70.8% 75.6% 78.3%
avg. precision 94.6% 91.1% 89.1% 88.0% 87.2% 85.9%
avg. real rating 4.75/5 4.61/5 4.49/5 4.47/5 4.45/5 4.41/5

CS, CT = 0.0, top-1
avg. coverage 22.9% 49.1% 66.7% 72.7% 76.2% 77.9%
avg. precision 95.1% 90.7% 88.9% 87.8% 87.0% 86.2%
avg. real rating 4.74/5 4.58/5 4.49/5 4.47/5 4.44/5 4.42/5

CS, CT = 0.5, top-1
avg. coverage 22.9% 49.3% 66.7% 72.7% 76.2% 77.9%
avg. precision 95.1% 90.8% 88.9% 87.7% 86.9% 86.1%
avg. real rating 4.75/5 4.62/5 4.49/5 4.47/5 4.44/5 4.41/5

Table A4. Aggregated results of the proposed algorithm when recommending three items to each
user (top-3), under different settings.

Setting/Metric Rclass1 Rclasses1–2 Rclasses1–3 Rclasses1–4 Rclasses1–5 Rclasses1–6

PC, K = 200, top-3
avg. coverage 5.8% 23.1% 37.9% 47.5% 55.6% 60.7%
avg. precision 95.6% 92.3% 90.3% 89.1% 87.9% 86.2%
avg. real rating 4.77/5 4.62/5 4.52/5 4.50/5 4.47/5 4.41/5

PC, K = 500, top-3
avg. coverage 7.5% 25.5% 41.6% 49.7% 56.3% 60.3%
avg. precision 95.6% 92.0% 90.2% 89.2% 88.1% 86.7%
avg. real rating 4.75/5 4.64/5 4.52/5 4.51/5 4.48/5 4.43/5

PC, CT = 0.0, top-3
avg. coverage 9.0% 29.1% 46.3% 53.6% 59.1% 62.2%
avg. precision 95.8% 92.9% 91.1% 89.9% 88.8% 87.7%
avg. real rating 4.76/5 4.67/5 4.57/5 4.53/5 4.50/5 4.46/5
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Table A4. Cont.

Setting/Metric Rclass1 Rclasses1–2 Rclasses1–3 Rclasses1–4 Rclasses1–5 Rclasses1–6

PC, CT = 0.5, top-3
avg. coverage 8.5% 27.2% 42.4% 51.3% 57.9% 62.4%
avg. precision 95.5% 92.9% 90.8% 89.5% 88.3% 86.8%
avg. real rating 4.74/5 4.66/5 4.54/5 4.52/5 4.48/5 4.44/5

CS, K = 200, top-3
avg. coverage 7.2% 26.6% 40.9% 51.5% 61.0% 67.7%
avg. precision 94.8% 92.1% 90.1% 88.8% 87.4% 85.3%
avg. real rating 4.74/5 4.64/5 4.54/5 4.50/5 4.45/5 4.39/5

CS, K = 500, top-3
avg. coverage 9.4% 29.3% 45.4% 55.0% 63.2% 67.8%
avg. precision 95.2% 92.3% 90.3% 89.3% 88.0% 86.5%
avg. real rating 4.74/5 4.63/5 4.54/5 4.51/5 4.47/5 4.42/5

CS, CT = 0.0, top-3
avg. coverage 11.5% 33.2% 51.4% 59.1% 64.9% 67.7%
avg. precision 95.7% 92.1% 90.2% 89.0% 88.0% 87.1%
avg. real rating 4.75/5 4.65/5 4.52/5 4.50/5 4.47/5 4.44/5

CS, CT = 0.5, top-3
avg. coverage 11.5% 33.1% 51.5% 59.1% 65.0% 67.7%
avg. precision 95.7% 92.1% 90.1% 89.0% 87.9% 87.1%
avg. real rating 4.75/5 4.64/5 4.52/5 4.50/5 4.47/5 4.44/5
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